What do I need to be able

 to do?By the end of this unit you should be able to:

- Describe and continue both lInear and non-linear sequences
- Explain term to term rules for linear sequence
- Find missing terms in a linear sequence

Keywords

I| Sequence: items or numbers put in a pre-decided order
II Term: a single number or variable
II Position: the place something is located
II Rule: instructions that relate two variables
II Linear: the difference between terms increases or decreases by the same value each time
I| Non-linear: the difference between terms increases or decreases in different amounts
I| Difference: the gap between two terms
II arithmetic: a sequence where the difference between the terms is constant
II Geometric: a sequence where each term is found by multiplying the previous one by a fixed non zero number

Describe and continue a sequence diagrammatically

CHECK - draw the next terms

Sequence in a table and graphically

Position: the place in the sequence

Term: the number or variable (the number of squares in each image)

Graphically

In a table
Position
Term

Because the terms increase by the same addition each time this
is linear - as seen in the graph

Continue Linear Sequences

$7,11,15,19 \ldots$

How do I know this is a linear sequence?
It increases by adding 4 to each term.
How many terms do I need to make this conclusion?
at least 4 terms - two terms only shows one difference not if this difference is
constant (a common difference).
How do I continue the sequence?
You continue to repeat the same difference through the next positions in the
I_ sequence

Continue non-linear Sequences

$$
1,2,4,8,16 \ldots
$$

How do 1 know this is a non-linear sequence?
It increases by multiplying the previous term by 2 - this is a geometric sequence because the constant is multiply by 2
I How many terms do I need to make this conclusion?
I at least 4 terms - two terms only shows one difference not if this difference is constant (a I common difference).
I How do I continue the sequence?
I You continue to repeat the same difference through the next positions in the sequence.

Explain term-to-term rule tory yo o et tron tee to teem

Try to explain this in full sentences not just with mathematical notation
Use key maths language - doubles, haves, multiply by two, add four to the previous term etc.

Kemporcs
Function: a relationship that instructs how to get from an input to an output
Input: the number/symbol put into a function
Output: the number/ expression that comes out of a function
I Operation: a mathematical process
I I Iverse: the operation that undoes what was done by the previous operation. (The opposte operation)
I Commutative: the order of the operations do not matter.
I) Substitute: replace one variable with a number or new variable

I Expression: a maths sentence with a minimum of two numbers and at least one math operation (no equals sign)
Evaluate: work out
Linear: the difference between terms increases or decreases by the same value each time

What do I need to be able to

 do?By the end of this unit you should be able
to:

- Be able to use inverse operations and "operation families".
- Be able to substitute into single and two step function machines.
- Find functions from expressions.
- Form sequences from expressions
- Represent functions graphically.

Find functions from expressions

Find the relationship between the input and the output
Sometimes there can be a number of possible functions, $\mathrm{eg}+7 \mathrm{x}$ or $\times 2$ could both be solutions to the above function machine

Using letters to represent numbers

ir Single function machines (algebra)

$+10$
To find the input from the output
Use the INVERSE operation

Substitution into expressions

$4 y \longleftarrow 4$ lots of ' y '
If $y=7$ this means the expression is asking for 4 'lots of' 7
4×7 OR $7+7+7+7$ OR 7×4
eg: $y-2$
$=7-2=5$

Fepresenting finuctions graphicialuy
II Take the function and generate a sequence $2(x+3)$

II To represent graphicaly the inpot becoomes \times co-radinates
I) and the output becomes y co-ordinates
$y=2(x+3)$

This becomes a co-ordinate pair
$(2,10)$ to plot on a graph

NOTE:
Because this is a linear graph you can predict graph you can predict
other values
NPUT

YEAR 7 - ALGEBRAIC THINKINg @uhisto_maths Equality and Ëquivalence

What do I need to be able to do?

By the end of this unit you should be able to:

- Form and solve linear equations
- Understand like and unlike terms
- Simplify algebraic expressions

Keywords

Equality: two expressions that have the same value
Equation: a mathematical statement that two things are equal

1) Equals: represented by ${ }^{\prime}=$ ' symbol - means the same

I| Solution: the set or value that satisfies the equation
I| Solve: to find the solution
II Inverse: the operation that undoes what was done by the previous operation (The opposite operation)
I| Term: a single number or variable
II Like: variables that are the same are 'ilike'
II Coefficient: a muttiplicative factor in front of a variable eg. $5 x$ (5 is the coefficient, x is the variable)
II Expression: a maths sentence with a minimum of two numbers and at least one math operation (no equals sign)

There is more to this than just
spotting the answer

Solve one step equations $(x /+)$
Solve one step equations
$x+42=59$
$x+42=59$
$42+x=59$
$59-x=42$
$59-42=x$

year 7 －place mallee and prooption ＠whisto＿maths
 Ordering integers and decimals

What do I need to be able to do？

By the end of this unit you should be able to：
－Understand place value and the number system incuding decimals
Understand and use place value for decimals， integers and measures of any size
Order number and use a number line for positive and negative integers，fractions and decimals；
use the symbols $=, \neq, \leq, \geq$
Work with terminating decimals and their corresponding fractions
－Round numbers to an appropriate accuracy Describe，interpret and compare data distributions using the median and range

Keywords

Approximate：To estimate a number，amount or total often using rounding of numbers to make them easier to calculate with
Integer：a whole number that is positive or negative
I Interval：between two points or values
｜Median：a measure of central tendency（middle，average）found by putting all the data values in order and finding the middle
｜\｜value of the list．
｜｜Negative：any number less than zero，written with a minus sign
｜I Place holder：We use 0 as a place holder to show that there are none of a particular place in a number
I Place value：The value of a digit depending on its place in a number．In our decimal number system，each place is 10 times
I I bigger than the place to its right
I Range：The difference between the largest and smallest numbers in a set
Significant figure：A digit that gives meaning to a number．The most significant digit（figure）in an integer is the number on the left．The most significant digit in a decimal fraction is the first non－zero number after the decimal point

Inteeer Pacace Vale

Three billon，one hundred and forty eight millon，
thirty three thousand and twenty nine
I bilion I，000，000， 000
I million $1.000,000$

htenat on a a number ine

 1 ニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニ1 Rounding to the nearest power of ten If the number is hafway between we＂round up＂

Example $1 \quad$ Median：put the in order $\begin{array}{llllll}3 & 4 & 8 & 9 & 12\end{array}$
｜Example 2 Median：put the in order
$\begin{array}{lll}150 & 154 & 148 \\ 137 & 160 & 158\end{array}$ There are 2 middle numbers Find the midpoint

ーニーニーニーニーニーニーニーニー
Comparing decimals Which the largest of 0.3 and 0.23 ？

$0.3>0.23$
＂There are more counters in the furthest column to the left＂ the same number of decimal places is another way to

$$
\begin{aligned}
& \text { compare the number of tenths } \\
& \text { and hundredths }
\end{aligned}
$$

I＜less than
$1>$ greater than ${ }^{\text {Two and a half million }=2500000}$
＝equal to
｜\neq not equal to six thousand and eighty <68000

Decimals

 hundrecths

YEAR 7 - PLACE VALUE AND PROPORTION... FDP equivalence

What do I need to be able to do?

By the end of this unit you should be able to:

- Convert fluently between fractions, decimals ε percentages

Keywords

Fraction: how many parts of a whole we have
1| Decimal: a number with a decimal point used to separate ones, tenths, hundreaths etc.

1) Percentage: a proportion of a whole represented as a number between 0 and 100

I| Place value: the numerical value that a digt has decided by its postion in the number
II Placeholder: a number that occupies a postion to give value
II Interval a range between two numbers
II Tenth: one whole spit into 10 equal parts
II Hundreath: one whole split into 100 equal parts
II Sector: a part of a circle between two radius (often referred to as looking like a piece of pie)
II Recurring: a decimal that repeats in a given pattern

Tenths and hundredths

0 ones, 5 tenth and 2 hundredths
$0+0.1+0.1+0.1+0.1+0.1+0.01+0.01$ $=0+0.5+0.02$ $=0.52$

Onarumber ine

One tenth - split into 10 equal parts

One hundredth $=\frac{1}{100}=0.01$

I

The denominator is represented by EQUaLLY
sized parts - this is spiti into quarters

One whole split into 18 equal parts 18 is the denominator 6 is the numerator

YEAR 7 - APPLICATION OF NUMBER
 @whisto_maths

 Solving problems with addition and subtraction

 Solving problems with addition and subtraction}

What do I need to be able to do?

I By the end of this unit you should be able to:

- Understand properties of addition/ subtraction

- Use mental strateges for adodition/subtraction

Use formal methods of addition/Subtraction for integers I Use formal methods of addition/Subtraction for decimals | Solve problems in context of perimeter
Sove problems with finance, tables and timetables
Sove problems with frequency trees
|- Solve problems with bar charts and line charts
Keywords
I I Commutative: changing the order of the operations does not change the result
I Associative: when you add or mutiply you can do so regardless of how the numbers are grouped
Inverse: the operation that undoes what was done by the previous operation. (The opposite operation)
Placeholder: a number that occupies a position to give value
Perimeter: the distance/ length around a 2D object
I Polygon: a 2 D shape made with straight lines
I Balance: in financial questions - the amount of money in a bank account
I | Credit: money that goes into a bank account
I | Debit: money that leaves a bank account
$============\Perp=============================1$

Iaddition/Subtraction with integers

- Bar models

1. Part/ Whole diagrams
addition is commutative
Subtraction the order has to stay the same
$360-147=360-100-40-7$

- Number lines help for addition and subtraction
- Working in 10 's first aids mental addition/ subtraction
-Show your relationships by writing fact familes

Formal written methods

Remember the place value of each column You may need to move 10 ones to the ones column to be able to subtract

Solve problems with finance

Money uses a two decimal place system

$$
142 \text { on a calculator represents } £ 1420
$$

Check the units of currency - work in the same

Harton	1005	1045	1130
Bridge	1024	1106	1147
Aville	1051	1133	1205
Ware	1117	1202	1233

Each column represents a journey, each row represents the time the 'bus' arrives at that location

TIME CALCUALTIONS - use a number line

Two-way tables

Where rows and columns intersect is the
outcome of that action.

60 people visted the zoo one Saturday morning
26 of them were adults. 13 of the aduut's favourite animal was an elephant 24 of the children's favourte animal was an elephant.

The overall total "60 people'
a frequency tree is made up from part-whole models. One piece of information leads to another
 be taken from the completed trees
eg 34 children visited the zoo

II Bar and line charts

Use addition/ subtraction methods to extract information from bar charts.
eg Difference between the number of students who waked and took the bus. Wak frequency - bus frequency

When describing changes or making predictions.

- Extract information from your data source
- Make comparisons of difference or sum of values.
- Put into the context of the scenario

YEAR 7 －APPLICATION OF NUMBER

Solving problems with multiplication and division

＠whisto＿maths

Keywords
 array：an arrangement of items to represent concepts in rows or columns
 Multiples：found by multiplying any number by positive integers
 Factor：integers that multiply together to get another number．
 ｜Mill：prefix meaning one thousandth
 I I Centi：prefix meaning one hundredth．
 ｜I Kill：prefix meaning multiply by 1000
 I Quotient：the result of a division
 II Dividend：the number being divided
 I Divisor：the number we divide by

Multiplication methods

Less effective method especially for bigger multiplication

Long multiplication （column）

Grid method

Estimations：Using estimations allows a

1 Division methods
$3584 \div 7=512$
Short division
512
Complex division
$7 \longdiv { 3 { } ^ { 3 } 5 8 ^ { 1 } 4 }$
$\div 24=\div 6 \div 4$
Break up the divisor using factors

all give the same solution as represent the same proportion Multiply the values in proportion until the divisor becomes an integer
of 10 is commutative
$\div 10$ then $\div 10 \longrightarrow \div 100$

Metric conversions

ㄴーニーーーーニーニニーニ

Mean problems 1
1）Lilly Annie and Ezra have the following cubes

$6 \times 4+8 \times 2$

If you have multiple operations from the same tier work from left to right

$$
24+16=40
$$

a
\square

Division with decimals

area problems

Rectangle
Base \times Perpendicular height

Paralelogram／Rhombus Base \times Perpendicular height

Triangle
$12 \times$ Base \times Perpendicular height a triangle is haft the size of the rectangle it would fit in

Multiplication with decimals

 Perform multiplications as integers eg $02 \times 0.3 \longrightarrow 2 \times 3$ Make adjustments to your answer to match the question： $02 \times 10=2$$0.3 \times 10=3$

YEAR 7 - APPLICATION OF NUMBER
 Fractions and percentages of amounts

What do I need to be able to do?

I By the end of this unit you should be able to:
I - Find a fraction of a given amount
| - Use a given fraction to find the whole or other fractions
I - Find the percentage of an amount using mental methods

- Find the percentage of a given amount using a calculator

Keywords

II
Fraction: how many parts of a whole we have
Equivalent: of equal value
Whole: a number with no fractional or decimal part
Percentage: parts per 100 (uses the \% symbol)
Place Valve: the value of a digit depending on its place in a number. In our decimal number system, each place is
10 times bigger than the place to its right
Convert: change into an equivalent representation, often fraction to decimal to a percentage cycle.

Fraction of a given amount The bar represents the whole amount

90
Find $\frac{2}{5}$ of $£ 205$

$£ 205 \div 5=£ 41$
Each part of the bar model represents $£ 41$
$2 \times £ 41=£ 82$

The wording of the question is important to setting up the bar model

What is $\frac{\mathbf{1}}{\mathbf{6}}$ of the number?

Find the whole

Use the whole to find a given part

The whole represents 100%

Method 1
$65 \%=10 \% \times 6+5 \%$
$=(8 \times 6)+4$
$=52$
Method 2
$65 \%=50 \%+10 \%+5 \%$
$=40+8+4$
$=52$

For bageer percentagess tis sometimes essiser to tate away from
100%

\section*{| $\frac{2}{3}$ of a vave is 70 . What is the whole number? |
| :--- | :--- | :--- |}

Use a fraction of amount

Find the percentage of an amount (Calculator methoods) Using a multipier

Find 65% of 80 Fraction, decimal percentage conversion $65 \%=\frac{65}{100}-065 \longleftarrow$ The mutipier
$0.65 \times 80=52$

Using the percent button
Find 65% of 80
Type 65
Press 5 shlf $0(\%)$
Press 80 and then press $=$
This brings up the $\%$ button on screen You will see 65\%.

> You can also use the calculator to support non calculator methods and find 1% or 10% then add percentages together

"of" can represent ' x ' in calculator methods

YEAR 7 - DIRECTED NUMBER

 Operations with equations and directed numbers

 Operations with equations and directed numbers
 @whisto_maths

What do I need to be able to do?

By the end of this unit you should be able to:
1- Perform calculations that cross zero

11 Keywords

II Subtract: taking away one number from another.
I Negative: a value less than zero.
I | Commutative: changing the order of the operations does not change the result
I | Product: multipy terms
I I Inverse: the opposite function
I I Square root: a square root of a number is a number when mutipied by itseff gives the value (symbol $\sqrt{ }$)
I Square: a term multipled by itseff.
II Expression: a maths sentence with a minimum of two numbers and at least one math operation (no equals sign)

Year 7 - fractional thnaning

addition and subtraction of fractions

$$
\begin{aligned}
& 1 \text { I } \bar{K}-ー \text { Reywords } \\
& \text { I } \\
& \text { I Numerator : the number above the line on a fraction. The top number. Represents how many parts are taken } \\
& \text { I Denominator: the number below the line on a fraction The number represent the total number of parts } \\
& \text { I Equivalent: of equal value } \\
& \text { I Mixed numbers: a number with an integer and a proper fraction } \\
& \text { I Improper fractions: a fraction with a bigger numerator than denominator } \\
& \text { I Substitute: replace a variable with a numerical value } \\
& \text { I Place value: the value of a digit depending on its place in a number. In our decimal number system, each place is } \\
& \text { I } 10 \text { times bigger than the place to its right }
\end{aligned}
$$

add/Subtract fractions
Same denominator

add/Subtract unit fractions Same denomandor

$\left\lvert\, \frac{1}{12}+\frac{1}{12}-\frac{1}{12}\right.$ 品

add/Subtraction fractions (common multiples)

I Partitioning method
$2 \frac{1}{5}-1 \frac{3}{10}=2 \frac{2}{10}-1 \frac{3}{10}=2 \frac{2}{10}-1-\frac{3}{10}=1 \frac{2}{10}-\frac{3}{10}=\frac{9}{10}$

- Convert to an improper fraction

Iadd/ Subtract from integers

add/Subtraction any fractions

$\frac{10}{15}$
$\frac{12}{15}$

Use equivalent fractions to find a common multiple for both denominators

II Fractions in algebraic contexts

YEAR 7 - LINES AND ANGLES

 Constructing, measuring and using

 Constructing, measuring and using geometric notation

 geometric notation}

What do I need to be able to do?

By the end of this unit you should be able to:

- Use letter and labelling conventions
- Draw and measure ine segments and angles
- Identify parallel and perpendicular lines
- Recognise types of triangle
- Recognise types of quadrilateral
- Identify polygons
- Construct triangles (SaS, SSS, aSa)
- Draw Pie charts

Keywords
1 Polgon: a 2 Dhape made with straight ines
I Scalene triangle: a triangle with all different sides and angles
I sosceles triangle: a triangle with two angles the same size and two angles the same size
Right-angled triangle: a triangle with a right angle
Frequency: the number of times a data value occurs
I I Sector: part of a circle made by two radil tocching the centre
I Rotation: turn in a given direction
I | Protractor: equipment used to measure angles
I I Compass: equipment used to draw arcs and circles.

Letter and labelling con The letter in the midde is The arc represents the ander

angle Notation: three letters ABC This is the angle at $B=113^{\circ}$

Line Notation: two letters EC
The line that joins E to C

The base line follows the line segment

Classify angles

$\frac{\text { acute angles }}{0^{\circ}<\text { angle }<90^{\circ}}$	$\frac{\text { Right }}{90^{\circ} \text { angles }}$
$\frac{\text { Obtuse }}{90^{\circ}<\text { angle }<180^{\circ}}$	Right angle notation
$\frac{\text { Reffex }}{180^{\circ}<\text { angle }<360^{\circ}}$	$\frac{\text { Straight Line }}{180^{\circ}}$

Year - LINES AND ANGLES

What do I need to be able to do?

By the end of this unit you should be able to:

- Understand/use the sum of angles at a point
- Understand/use the sum of angles on a straight line
- Understand/use equality of vertically opposite angles
Know and apply the sum of angles in a triangle
Know and apply the sum of angles in a quadrilateral

Keywords

Vertically Opposite: angles formed when two or more straight ines cross at a point
Interior angles: angles inside the shape
Sum: total add all the interior angles together
Convex Quadrilateral: a four-sided polygon where every interior angle is less than 180°
Concave Quadriatera: a four-sided polygon where one interior angle exceeds 180°
I Polygon: a 2D shape made with straight lines
I Scalene triangle: a triangle with all different sides and angles
I | sosceles triangle: a triangle with two angles the same size and two angles the same size
II Right-angled triangle: a triange with a right angle

Sum of angles at a point The sum of angles around a point is 360°

Other angle rules still apply
Look for straight line sums and angles around a point.

Form equations with information from diagrams:
$2 x-12=42$
$2 x=54$

$x=27^{\circ}$

ISum of angles in triangles

I Sum of angles on a straight line
adiacent angles that share a common point on a line add up to 180°

Developing number sense

What do I need to be able to do?

By the end of this unit you should be able to:

- know and use mental addition/ subtraction
- Know and use mental multipication/ division
- Know and use mental arithmetic for decimals
- Know and use mental arithmetic for fractions
- Use factors to simplify calculations
- Use estimation to check mental calculations
- Use number facts
- Use algebraic facts

Keywords

II
I | Commutative: changing the order of the operations does not change the result
I Associative: when you add or mutiply you can do so regardless of how the numbers are grouped
I I Dividend: the number being divided
I Divisor: the number we divide by
I Expression: a maths sentence with a minimum of two numbers and at least one math operation (no equals sign
Equation: a mathematical statement that two things are equal
Quotient: the result of a division

Mental methods for addition/subtraction

II Mental methods for mutipicication/ division

Mutiplication is commutative
$360-147=360-100-40-7$

- Number lines help for addition and subtraction
- Working in 10 's first aids mental addition/ subtraction

$2 \times 4=4 \times 2$
The order of mutiplication does not change the result

Partitioning can help multiplication $24 \times 6=20 \times 6+4 \times 6$
$=120+24$
$=\underline{144}$
Division is not associative
Chunking the division can help $4000 \div 25$ "How many 25's in 100 " then how many chunks of that in 4000 .

Mental methods for decimals

II Mental methods for fractions use bar models where possible

I Muttiplying by a decimal <1 will make the original value smaller eg $\times 0.1=\div 10$

Methoos for multipication 12×0.03

Methoods for addition $23+24$

Methods for division $15 \div 005$ Mutiply by powers of 10 until the divisor becomes an integer

£2l left
How much did they have to begin with?

Using factors to simplify calculations
30×16

Estimation

Estimations are useful - especially when using fractions and decimak to check if your solution is possibe

Most estimations round to I significant figure
Estimations are useful - especially when using fractions and decimas to check if your soltion is possible.
$210+899<1200$
This is true because even if both numbers were rounded up, they would reach $300+900$
The correct estimation would be
$200+900=1100$.

Nimber focts

```
use
                                124\times5=620
```

\square
For multiplication, each value that is mutipied or divided by powers of 10 needs to happen to the result

$$
620 \div 12.4=50
$$

For division you must consider the impact of the divisor becoming smaller or bigger. Smaller - the answer will be bigger (tt is being shared into less parts) Bigger - the answer will be smaller (t is being shared into more parts)

1 algebraic facts

The unknown quantity inn't changing but the
add 2 to the total
$a+b+2=7$

Year 7 - REASONNG WTH NUMEER

 @whisto_maths
What do I need to be able to do?

By the end of this unit you should be able to:

- bentify and represent sets
- Interpret and create Venn diagrams
- Understand and use the intersection of sets
- Understand and use the union of sets
- Generate sample spaces for single events
- Calculate the probability of a single event
- Understand and use the probability scale

Keywords

Set: collection of things
Element: each item in a set is called an element
Intersection: the overlapping part of a Venn diagram (OND \cap)
Union: two ellipses that join (OR U)
I Motually Exclusive: events that do not occur at the same time
| Probability: Ilkelihood of an event happering
I I Bias: a buit-in error that makes all values wrong (unequal) by a certain amount, eg a weighted dice
I I Fair: there is zero bias, and all outcomes have an equal likelihood
I Random: something happens by chance and is unable to be predicted

Identify and represent sets

The universal set has this symbol ξ - this means EVERYTHING in the Venn diagram is in this set
a set is a collection of things - you write sets inside curly brackets \{ \}
$\xi=\{$ the numbers between I and 50 inclusive $\}$

Interpret and create Venn diagrams

Mutualy exclosive sets
The two sets have nothing in common No overlap

Union of sets The two sets have some elements in common - they are placed in the intersection

Subset
all of set B is also in Set a so the ellipse fits inside the set

The box

Ground the outside of every Venn diagram will be a box. If an
element is not part of any set it is placed outside an elipse but
inside the box

Union of sets
 Elements in the union
 could be in set A OR set
 B
 The notation for this is $A \cup B$
 \qquad

There are 7 elements that are either a multiple of 5 OR a mutiple of 3 between 1 and 15

This Venn shows the number of elements in each set
$\xi=\{$ the numbers between I Iand 15 noclisve $\}$
$A=\left\{\begin{array}{l}\text { Mutiples of } 5\} \quad B=\{\text { Mutipes of } 3\}\end{array}\right\}$.

The elements in $A \cup B$ are 5, 10, 15, 3, 9, 6, 12

- a sample space represents a possible outcome from an event
- They can be interpreted in a variety of ways because they do not tell you the probability

Probability of a single event

$$
\frac{4}{10}=\frac{40}{100}=0.40=40 \%
$$

ISum of probabilities
Probability is always a value between 0 and I

The probability of getting a blue ball is $\frac{1}{5}$

The sum of the probabilities is 1

The table shows the probabilty of selecting a type of chocolate

Dark	Milk	White
0.15	0.35	

$P($ white chocolate $)=1-0.15-0.35$
$=0.5$

Year 7 - REASONNG WTH NUMEER

Prime numbers and Proof

Multiples The "times table" of a given number all the numbers in this lists below are mutiples of 3 .
$\left.\begin{array}{|c}3,6,9,12,15 \ldots \\ \text { This Ist continues and doesn't } \\ \text { end }\end{array}\right\}$

Keywords

Mutiples: found by mutipling any number by positive integers

Factor: integers that muttiply together to get another number.
Prime: an integer with only 2 factors.
I| Conjecture: a statement that might be true (based on reasoning) but is not proven
II Counterexample: a special type of example that disproves a statement.
II Expression: a maths sentence with a minimum of two numbers and at least one math operation (no equals sign)
I HCF: highest common factor (biggest factor two or more numbers share)
I I LCM: lowest common multiple (the first time the times table of two or more numbers match)

Prime numbers

Integer

- Only has 2 factors

The first prime number
The only even prime number

Leam or how-to quick recall...
$2,3,5,7,11,13,17,19,23,29 \ldots$
i Square and triangular numbers
Square numbers
Triangular numbers
Representations are useful - an extra counte
Com
Common multiples and LCM
LCM - Lowest common multiple
LCM of 9 and 12
$9 \quad 9,18,27,36,45,54$
$12 \quad 12,24,36,48,60$

Comparing fractions

$\frac{3}{5}$ and $\frac{7}{10}$
Conjectures and cOu
Conjecture

$1,4.4$
The numbers ine sequence
are doubling each time.

a patem that is noticed for many cases

Product of prime factors

Common factors and HCF

- Common factors are factors two or more numbers share

HCF - Highest common factor
HCF of 18 and 30
II

Common factors
(factors of both numbers)
1,2,3,6

6 is the biggest factor they share
I is a common factor of all numbers

Representations are useful to understand a square number n^{2}
$1,4,9,16,25,36,49,64 \ldots$

$$
1,3,6,10,15,21,28,36,45 \ldots
$$

