
1.1.2 CPU PERFORMANCE

GCSE COMPUTING
KNOWLEDGE ORGANISER 1.1 Systems ARCHITECTURE

The purpose of the CPU:
 The fetch-execute cycle

Common CPU components and their function:
 ALU [Arithmetic and Logic Unit]

 CU [Control Unit]

 Cache

 Registers

Von Neumann Architecture:
 MAR (Memory Address Register)

 MDR (Memory Data Register)

 Program Counter

 Accumulator

1.1.1 ARCHITECTURE OF THE CPU

FETCH

DECODEEXECUTE

- Data and instructions FETCHED from main memory

-They are then DECODED and EXECUTED

- This is carried out in a continuous cycle

- ALU performs calculations and logic checks.

- It may take several F-E-Cycles for a calculation to be

finished.

- Intermediate results are stored in the accumulator

- Cache is VERY FAST memory.

- Instructions that are carried out frequently are stored there

so that they do not have to be FETCHED [saving time]

- Registers = small amounts of high-speed memory

contained within the CPU. Registers store data that is
needed during the F-E-C

1.1.3 EMBEDDED SYSTEMS

ACCUMULATOR – holds

data while it is being

processed and while

MAR - holds the address of the current

instruction that is to be fetched from

memory, or the address in memory to

which data is to be transferred

PC - holds the

memory address of

the next instruction to

be fetched from

primary memory

MDR -holds the contents

found at the address held in

the MAR, or data which is to

be transferred to primary

memory

- John Von Neumann was a Hungarian mathematician who developed the idea that a computer

could be used for many purposes and not just one.

- This was called the stored program concept.

- A processor based on Von Neumann’s architecture would use memory to store data and

instructions and would use the fetch execute cycle to retrieve and process instructions.

- Von Neumann’s architecture makes use of a number of registers…

How common characteristics of CPUs affect

their performance:
 Clock speed

 Cache size

 Number of cores

The purpose and characteristics of embedded

systems

Example of embedded systems

- The clock coordinates all the computer’s

components.

- It sends out a pulse the synchronises each

component – the frequency of the pulses is

known as the clock speed.

- It is measured in Hertz.

- The higher the frequency, the more

instructions can be processed in a given

time

- Each processing unit

inside a CPU is called a

CORE.

- Each core can carry out

the fetch execute cycle

- The more cores a CPU

has, the more instructions

it can process in a given

time (i.e. PARALLEL

PROCESSING)

F

DE

- Embedded systems are small computer systems
built inside larger devices or pieces of equipment

- They are designed to do one specific task (rather
than range of task)

- Embedded systems have a simple user interface
- In addition, the software used to control or run the

system is also very basic

CACHE is very fast (and

expensive) memory that can

store frequently used data or

instructions

WHICH OF

THESE ARE

ARE NOT

Embedded

Systems?
DOES

ONE TASK
DOES

ONE TASK
CAN DO

MANY TASKS

single core CPU
= 1 instruction

F

DE

F

DE

dual core CPU
= 2 instructions VS

© J Bridgeman 2020

-PRIMARY STORAGE is used to store programs

and data currently used by the computer. When a

user needs to run a program, it is loaded from disk to

primary storage.

-Another term for primary storage is RAM or

Random Access Memory. It is given this name

because data can be stored anywhere within the

available memory.

-RAM is volatile (i.e. any data stored in RAM is lost

when the device is powered off)

-ROM or Read Only Memory is non-volatile (i.e.

any data stored in RAM is not lost when the device is

powered off) – it is stored permanently.

-ROM can be used to store the BIOS (i.e. the

program that boots up and loads the Operating

System when the computer turned on)

- VIRTUAL MEMORY is used when the computer

is short of RAM. This involves the hard disk

being used as memory instead of RAM.

- This is not ideal as the speed of a hard disk is

MUCH slower then RAM.

GCSE COMPUTING
KNOWLEDGE ORGANISER 1.2 MEMORY AND STORAGE

The need for primary storage

The difference between RAM and ROM

The purpose of RAM in a computer system

The purpose of ROM in a computer system

Virtual memory

The need for secondary storage

Common types of storage:

 Optical

 Magnetic

 Solid state

1.2.1 PRIMARY STORAGE (MEMORY)

1.2.2 SECONDARY STORAGE)

1.2.3 UNITS

- Optical Storage includes CD, DVD and Blu-ray.

Data is written to optical storage media using a laser.

- The capacity of this type of media ranges from 640

megabytes (CD) to 50 gigabytes (Blu-ray)

- Since it involves the use of moving parts,

access/data transfer speeds are slower than for

other types of media.

- Magnetic Storage media include hard drives and

tape and can have a huge capacity (100’s of

terabytes)

- Magnetic storage media devices involve the use of

moving parts.

- This means that they have comparatively slow data

read and write speeds and can be prone to damage.

- Solid state media is also known as electrical or

flash storage.

- Solid state has the fastest transfer speed out of all

the three types of media, since it features no

moving parts

- This also makes it more robust than other forms of

storage and in addition they consume less power

- However this form of storage offers lower capacity

than other forms of media and is still comparatively

expensive.

Examples – CD, DVD, Blu-ray Examples – hard drive, magnetic tape, external hard drive

Examples – Solid State Drive, flash drive, SD Card

Criteria for

choosing

secondary

storage

REVISION NOTE
When recommending

a method of

secondary storage,

always consider the

context in which the

data will be used

The units of data storage:
 Bit
 Nibble (4 bits)
 Byte (8 bits)
 Kilobyte (1,000 bytes or 1KB)
 Megabyte (1,000 KB)
 Gigabyte (1,000 MB)
 Terabyte (1,000 GB)
 Petabyte (1,000 TB)
How data needs to be converted into a binary format

to be processed by a computer

Data capacity and calculation of data capacity

requirements

Computers are electrical devices;

their components are made up of

millions of circuits. Each circuit

contains switches which can be

Either ‘on’ or ‘off’. These can be

represented by the values 1 and

0. This is called binary.
1 0

ALL data is stored and processed in binary form – this

includes text, images, sound and video.

S
P

E
E

D
/C

O
S

T

This shows speed vs capacity of

primary/secondary storage

CAPACITY

Numbers
 How to convert positive denary whole numbers to binary

numbers (up to and including 8 bits) and vice -versa

 How to add two binary integers together (up to and

including 8 buts) and explain overflow errors which may

occur

 How to convert positive denary whole numbers into 2-

digit hexadecimal numbers and vice versa

 How to convert binary integers to their hexadecimal

equivalents and vice versa

 Binary shifts

1.2.4 DATA STORAGE

Characters
 The use of binary codes to represent characters

 The term ‘character set’

 The relationship between the number of bits per character

in a character set, and the number of characters which can

be represented , e.g.:

 ASCII

 Unicode

Images
 How an image is represented as a series of pixels, is

represented in binary

 Metadata

 The effect of colour depth and resolution on:

 The quality of the image

 The size of a sound file

Sound
 How sound can be sampled and stored in binary form

 The effect of sample rate, duration and bit depth on;

 The playback quality

 The size of a sound file

The need for compression
 The need for compression

 Types of compression;

 Lossy

 Lossless

1.2.5 COMPRESSION

Binary arithmetic

Use binary shift to:

- Multiply

00110111 x 2=
01101110
[left shift]
- Divide

00110111/2=
00011011
[right shift]

Hexadecimal has many uses

in computing:

- assembly language,

- to store a MAC Address

- representing colour codes

Hexadecimal numbers can be represented in

fewer digits then in binary making them easier

for humans to remember and more

economical in terms of storage

Every character (letters, numbers, symbols) sent to

the computer or typed in, is stored as 7-bit binary

code. For example, if the user types in the message

below, H is represented by the number ‘072’. This

character set is called ASCII

UNICODE uses 16 bits to allow an even wider range of

characters to be stored, including one used for foreign

languages:

-Bitmap images are made up of individual pixels. The more

pixels stored in an image, the higher the detail (resolution) will

be.

-Each pixel will be represented in binary as a 1 (on) or a 0 (off).

These binary digits are combined into binary numbers that can be

stored by a computer.

-Colour images need additional binary code to store the colour.

The more bits available to store the colour, the wider the possible

colour range. This binary value is called colour depth.

1

METADATA =

‘data about data’

i.e. additional

information stored

when an image

files is saved

ResolutionColour Depth

Type of file

Time & date
of creation

File size

Sound waves are ANALOGUE and must be converted

in to DIGITAL (0’s and 1’s) in order to be stored/

processed by computer. This is called SAMPLING.

-The height of a sound wave is its

AMPLITUDE.

-The SAMPLE RATE is the number of

samples captured per second.

-SAMPLE RESOLUTION is the number of

bits used to capture the sound COMPRESSION can be applied to any file type and is used to

reduce the size of a file. This is useful when files need to be

uploaded/downloaded to/from the internet or sent via email.

LOSSY LOSSLESS

File size is reduced at the

expense of quality

File size is reduced with

no loss of quality

GCSE COMPUTING
KNOWLEDGE ORGANISER 1.3 COMPUTER NETWORKS

CONNECTIONS AND PROTOCOLS
1.3.1 Networks and topologies LAN – computers and devices connected over a single

site or small geographical area

WAN – computers and devices connected over a wider

area

© J Bridgeman 2020

Peer-to-Peer: Devices connected

directly (with no server)

Client-Server: Computers (clients)

connected to a central server which could

provide services like:

 Shared files

 Internet access

 Share programs

 Shared peripherals (i.e. printers)

-All devices need a NETWORK INTERFACE CARD in order to

connect to a network.

-This contains a MAC ADDRESS – a code which uniquely

identifies a device on a network.

-ROUTERS connect devices across a WAN (including

the internet)

-A SWITCH allows devices to connect within a LAN

-Physical networks are possible with TRANSMISSION MEDIA

such as ETHERNET CABLES (i.e. twisted-pair copper,

coaxial, fibre-optic)

THE INTERNET is basically a giant

WAN – it is a network of networks.

Any computer or device connected to

the internet has an IP address which

acts as its “address” on the internet

When a user types in a URL, this is sent to a Domain Name Server

on the internet . DNS servers look up the URL and translate this into

an IP address

THE CLOUD

refers to services

that allow users to use

software or store files

on a servers owned and run by a third party.

iCloud and Google Drive are examples of

cloud based services and users need an

internet connection in order to access these

services.

1.3.2 Wired and wireless
networks, protocols and layers

PROTOCOLS are rules which allow different devices to

send/receive data to/from each other. Different protocols exist

depending on (i.e. uploading or downloading data, displaying a

webpage, sending/receiving an email

STAR MESH
LAN/WAN or

VLAN - Only one

‘node’ connected

to router

All computers

connect to a

central hub/

server/switch

SYMMETRIC

Risky - Single key used

to both encrypt &

decrypt the message

ASYMMETRIC

Safer as it uses a

PRIVATE &

PUBLIC key

Types of network:
 LAN (Local Area Network)

 WAN (Wide Area Network)

Factors that affect the performance of networks

The different computers in a client-server and

peer-to-peer network

The hardware needed to connect stand-alone

computers into a Local Area Network:
 Wireless access points

 Routers

 Switches

 NIC (Network Interface Card)

 Transmission media

The internet as a worldwide collection

of computer networks:
 DNS (Domain Name Server)

 Hosting

 The Cloud

 Web servers and clients

Star and Mesh network topologies

Modes of connection:
 Wired

 Ethernet

 Wireless

 Wi-Fi

 Bluetooth

Encryption

IP addressing and MAC addressing standards

Common protocols including:
 TC/IP

 HTTP

 HTTPS

 FTP

 POP

 IMAP

 SMTP

The concept of layers

1.4.2 IDENTIFYING AND PREVENTING
VULNERABILITIES

GCSE COMPUTING
KNOWLEDGE ORGANISER 1.4 NETWORK SECURITY

Forms of Attack:
Malware

 Social engineering, e.g. phishing, people

as the ‘weak point’

 Brute-force attacks

 Denial of service attacks

 Data interception and theft

 The concept of SQL injection

1.4.1 THREATS TO COMPUTER SYSTEMS
AND NETWORKS

Common prevention methods:
 Penetration testing

 Anti-malware software

 Firewalls

 User access levels

 Passwords

 Encryption

 Physical security

© J Bridgeman 2020

- MALWARE is software which can cause

damage to a computer. A computer or system

could become infected by a VIRUS, WORM

or TROJAN

SOCIAL ENGINEERING involves exploiting human

weaknesses in order to gain entry to computer system. This

can be done in a number of ways

- Malware is often hidden inside other programs (usually ones

that have been illegally)

-PHISHING emails are

sent by criminals and are

designed to steal money

or login details.

- They contain links or

attachments which, if

clicked on or

downloaded, allow the

criminal to access what

they want

DoS (DENIAL OF

SERVICE) attacks are

designed to “crash” a

network or website.

Criminals do this by

bombarding it with so

much ‘traffic’ that it

cannot function properly.

Other methods of DATA INTERCEPTION

and THEFT could be non – technical; for

example, SHOULDERING (looking over

someone’s shoulder when they enter data)

or finding private information (like login

details) on discarded documents)

BRUTE FORCE ATTACKS involve a hacker attempting

to guess a users password using trial-and-error. They

may use a computer program to do this, since it could

try millions of combinations very quickly.

HOW CAN YOU SPOT A PHISHING

EMAIL?

-Spelling mistakes

-Suspicious origin email address

- Impersonal (i.e. no name used)

- Asks for personal information

- Contains links or attachments

SQL INJECTION can be used to hack poorly

coded websites. A hacker could use a

database language called SQL to gain entry to

a websites database (for example, on an

online shopping site) by typing SQL code into

a web form.

FIREWALLS can be either hardware or

software – they are designed to intercept

data packets before they are received

from or sent to the internet

ANTI-MALWARE SOFTWARE

can scan files and programs for

viruses. They need to be kept up

to date as new malware is

developed all the time.

Companies can hire employ hackers to

try and find weaknesses in their

systems. This is called

PENETRATION TESTING

Network administrators can set different levels

of USER ACCESS LEVELS – for example,

some users may be able to install software,

while others may only be able to view files

Users should be made to set secure PASSWORDS – for example,

containing combinations of numbers, letters and characters. Users

could also protect their files using ENCRYPTION

PHYSICAL SECURITY includes

methods such as use of CCTV,

security guards and locked

doors.

PERIPHERAL MANGEMENT is needed. The

OS will manage these devices, which require

small programs called DRIVERS in order to

function.

In order for a computer to make use of additional

hardware (such as mice, keyboards and printers)

GCSE COMPUTING
KNOWLEDGE ORGANISER 1.5 SYSTEMS SOFTWARE

The purpose and functionality of

operating systems:
 User interface

 Memory management and multitasking

 Peripheral management and drivers

 User management

 File management

1.5.1 OPERATING SYSTEMS

© J Bridgeman 2020

UTILITY SOFTWARE is software used to keep a computer

running with optimum efficiency. Many OS contain built-in

utility programs and these can also be purchased as third-

party software.

FILE MANAGEMENT allows

users to search for, create, delete

and organise files and

1.5.2 UTILITY SOFTWARE

The purpose and functionality of utility software

Utility system software:
 Encryption software

 Defragmentation

 Data compression

COMMAND
LINE INTERFACE

GUI

Ease of use

Flexibility

Heavy use of
system resources

USER MANAGEMENT means

that multiple user accounts can

be added to one machine. Users

will have different access rights.

folders. It also allows

access rights to files

and folders to be

changed (i.e. to read

only)

One of the most important roles of the OS is

MEMORY MANAGEMENT and MULTITASKING.

Multitasking allows multiple files and programs to be

resident in memory at one time. This allows users to

switch rapidly between different programs.

A computer’s memory is organised into

“blocks”. The OS moves programs and files

in and out of main memory as and when they

are needed.

MAIN MEMORY

PROGRAM 1 PROGRAM 2 FILE 1 PROGRAM 3 FILE 2

OPERATING SYSTEMS act as an interface between the user and the

computer hardware.

Operating systems have two types of interface;

COMMAND LINE INTERFACE (which uses text based commands)

GRAPHICAL USER INTERFACE (which uses icons and pointers)

Files and programs are stored

in “blocks” on a hard drive.

Drives become fragmented as

files and programs are

removed and added over time.

DEFRAGMENTATION groups

files/programs and free space

together – this decreases the

time that the disk has to spend

load/saving.

DATA COMPRESSION utilities can be used

to reduce the size of a file. This is useful

when sending files electronically. Files

compressed with this type of software need

to have their contents extracted (using the

same utility) before they can be used again.

ENCRYPTION

SOFTWARE uses

ALGORITHMS to turn

PLAINTEXT files into

CIPHERTEXT. This means

that the contents of an

encrypted file cannot be read

without the use of the KEY that

was used to encrypt it.

GCSE COMPUTING
KNOWLEDGE ORGANISER 1.6 ETHICAL LEGAL and

Impacts of digital technology

on wider society including:
 Ethical issues

 Legal issues

 Cultural issues

 Environmental

issues

 Privacy issues

Legislation relevant to

Computer Science:

 The Data Protection Act 2018

 Computer Misuse Act 1990

 Copyright Designs and

Patents Act 1988

 Software licences (i.e. open source and proprietary)

1.6.1 ETHICAL, LEGAL, and ENVIRONMENTAL IMPACT

© J Bridgeman 2020

ETHICAL ISSUES

ENVIRONMENT

Networking removes the need for travel

Waste and pollution from manufacturing tech

SOFTWARE LICENSES

COMPUTER MISUSE ACT 1990

There are three main principles of the

Computer Misuse Act. It is an offence to:

1. access computer material without permission,

2. e.g. looking at someone else's files

2. access computer material without permission

and with intent to commit criminal offences, e.g.

hacking into your bank's computer and increasing

the money in your own account

3. alter computer data without permission, e.g.

writing a virus to destroy someone else's data

THE COPYRIGHT DESIGNS AND PATENTS ACT 1988

An act of law designed to provide protection for creators of

books, software music and video, against illegal copying,

piracy and distribution.

THE 8 PRINCIPLES OF

THE DATA PROTECTION ACT

2018

 Fair, lawful & transparent

processing

 Purpose limitation

 Data minimisation

 Accuracy

 Data retention periods

 Data security

 Accountability

COPYRIGHT – material cannot be

used/distributed without permission

CREATIVE COMMONS – material

can be used without permission

(though credit may need to be given)

SOCIAL MEDIA

Great for keeping in touch

Can be used for bullying/trolling

HEALTHCARE

Use of AI to diagnose illness

Poorer nations cannot afford

technology

NEWS

Lots of up-to-date news sources

Which are real, which are “fake news”?

DRIVERLESS CARS

Can auto-navigate and do not get

tired on long journeys

Will computers cause accidents?

ENVIRONMENTAL IMPACTS OF DIGITAL TECHHNOLOGY

AI/ROBOTICS

Can do repetitive tasks well

Will it replace humans?

THE RATINGS CULTURE

Easy to find, give and share

opinions

People can become obsessed with

how they are perceived

PRIVACY ISSUES

- Do you own your own data?

- Should governments and law

enforcement have complete access?

- What are COOKIES? Should you

allow websites to access them?

ETHICS = Our principles, the things that influence our choices

and behaviour

CULTURE = Our way of life, including customs and beliefs

ALGORITHMIC THINKING

An algorithm is a series of

steps necessary to

complete a task or solve a

problem. Once an

algorithm has been planned,

code can be written so that

the problem can be solved

using a computer.

PATTERN RECOGNITION

involves looking for similarities or

patterns in different aspects of

the problem.

GCSE COMPUTING
KNOWLEDGE ORGANISER 2.1 COMPUTATIONAL THINKING

ALGORITHMS AND PROGRAMMING
2.1.1 COMPUTATIONAL THINKING

© J Bridgeman 2020

ABSTRACTION – taking

only the important and

relevant data about the

problem and discarding

the unnecessary data.

2.1.2 Designing, creating
and refining algorithms

Principles of computational

thinking:
 Abstraction

 Decomposition

 Algorithmic thinking

Identify the inputs, processes, and

outputs for a problem

Structure diagrams

Create, interpret, correct,

complete, and refine algorithms

using:
 Pseudocode

 Flowcharts

 Reference language/high-level

programming language

 Identify common errors

 Trace tables

“Thinking like a computer”

“The process of approaching problems

systematically and creating solutions that

can be carried out by a computer”

DECOMPOSITION – taking a large problem

and breaking it down into smaller, simpler

problems. These are can be tackled more

easily

BIG
problem

High Level Language Pseudocode Reference Language

Specific syntax must be

used

No formal syntax – can

take any form

More formal structure

than pseudocode

Used to write code

Used to present an

algorithm so that a

human can understand it

Used to present an

algorithm to closely

resemble code

FOR loop in range(10):
PRINT(loop)

Loop 10 times
Print loop position
End loop

FOR loop = 1 to 10
PRINT(loop)

NEXT loop

START/END

DECISION

PROCESS

DIRECTION FLOW
INPUT/

OUTPUT
y = 0
z = 0
FOR x in range (4):

y = x * 2
z = z + y

x y z

0 0 0

1 2 2

2 4 6

3 6 12

4 8 20

TRACE

TABLES are

used to test and

identify the

outcome of

algorithms

FLOWCHARTS can

be used to represent

algorithms using the

symbols shown here.

Algorithms can also

be represented using

PSEUDOCODE or

REFERENCE

LANGUAGE

SUBPROGRAM

Standard sorting algorithms:

 Bubble sort

 Merge sort

 Insertion sort

2.1.3 SEARCHING AND SORTING ALGORITHMS
Standard searching algorithms:

 Binary search

 Linear search

-A BUBBLE SORT is an algorithm for sorting data.

-The algorithm works by going through a list of

unordered data and evaluating the data in pairs.

-If two data items are in the wrong order they are

exchanged.

-The algorithm then moves to the next pair.

-When the algorithm reaches the end of the data, the

process will be repeated until all data has been sorted

correctly. This might take SEVERAL PASSES through

the data.

-An INSERTION SORT is more

efficient than a bubble sort.

-The insertion sort works in a

similar way to sorting a hand of

cards.

-The algorithm works by

comparing the current data item

with the other items in the list

- If the data item is in the wrong

place, it is shifted to left until it is

in the correct place.

- This continues until all the

items of data are in the correct

place.

-A MERGE SORT is a DIVIDE AND CONQUER algorithm;

-First of all, the items of data in a list are divided in half until

each item is in a SUBLIST of one item.(This is the DIVIDE

stage)

-The algorithm will then merge each sublist, after comparing and

sorting them as appropriate.

-When all of the data has been merged back into a single list it

will be in the correct order. (This is the CONQUER stage)

- Merge sorts are more efficient than bubble or insertion sorts.

D
IV

ID
E

C
O

N
Q

U
E

R

INPUT item to be searched for
found = False
numbers = [4,2,6,1,5,3]
REPEAT

Compare item with current item in list
IF current item is the item searched for then

found = True
UNTIL end of list OR found = True
IF found = True

PRINT (“Item found”)
ELSE

PRINT (“Item not found”)

A BINARY SEARCH requires data to

be sorted in order before it can be

searched. A LINEAR SEARCH does

not –the algorithm will look at every

item in list until it either locates the data

or reaches the end of the list. The

binary search is the more efficient of

the two

BINARY SEARCH

LINEAR SEARCH

GCSE COMPUTING
KNOWLEDGE ORGANISER 2.2 PROGRAMMING

FUNDAMENTALS2.2.1 Programming fundamentals

© J Bridgeman 2020

The use of variables, constants, operators, inputs,

outputs and assignments

The use of the three basic programming

constructs used to control the flow of a program:
 Sequence

 Selection

 Iteration (count- and condition-controlled loops)

The common arithmetic operators

The common Boolean operators AND, OR and NOT

The use of data types:
 Integer

 Real

 Boolean

 Character and string

 Casting

question = input("Do you enjoy
programming?"))
if answer == "yes":

print("Awesome!")

name = input ("Please enter your name")
print ("Hello,"name)

const Pi = 3.142

CONSTANTS are similar in principle to variables, but their

value does not change throughout the program

A VARIABLE is a memory location used to store data.

Programmers can label a variable using an IDENTIFIER.

The contents of the memory location (and the value of the

variable) can be changed by the programmer.

Giving a value to a variable is called ASSIGNING. Variables

be can be assigned a value directly by the programmer or

INPUT by the user when running the program.

A print statement can be used to OUTPUT data – a print

statement can be used to display specific text or the contents

of a variable.

SELECTION involves the use of IF statements to

evaluate the contents of a variable - program will

execute different code depending on the value of

the variable

There are three main “constructs” used in high level

language programming – SEQUENCING, SELECTION

and ITERATION. SEQUENCING involves a block of

code that executes line after line (in sequence) :

print("Good morning")
name = input("What is your name?")
print("Hello",name)
age = int(input("How old are you?"))
print(age,"is a very good age!")

ITERATION is used to repeat (loop) a block of code.

This is a more efficient way of programming then to add

the same code multiple times. There are two types of

iteration; a count controlled loop runs a block of code

a SET number of times;

MATHEMATICAL

OPERATORS allow

calculations to be performed

using variables and

constants

Constants and variables can be stored

as a range of DATA TYPES. It is also

possible to use CASTING to convert data

from one type to another:

NumberString = “42”
Number = int(NumberString)
pi = 3.141
pi = int(pi)
print(pi)
3 >_

+ Addition

- Subtraction

/ Division

* Multiplication

DIV Integer

division

MOD Modulus

(remainder)

^ Exponent

2.2.2 DATA TYPES

BOOLEAN OPERATORS are

used when making logical

comparisons (i.e. when using IF

statements)

NOT Addition

AND Subtraction

OR Division

!= Not equal to

== Equal

< Less than

> Greater than

<= Less or = to

>= Greater than or

= to

for count in range (1,10):
print(“I have counted to”, count)

correct = False
while correct == False

password = input(“Enter your password”)
if password == correctpassword:

correct = True

a condition controlled loop runs a block of code until a

specific condition is met – for example, a program could

ask for a password until it is entered correctly.

Data can be imported to/exported from

programs using FILES. This means that a

program can keep its data, even when it is

closed and reopened. A range of FILE

HANDLING OPERATIONS are possible..

open Prepares the file ready for use

close Close access to the file when it

is no longer needed

read Retrieve data from the file

write Overwrite the file with new data

append Save new data onto the end of

the file

2.2.3 Additional programming techniques

The use of basic string manipulation

The use of basic file handling operations:
 Open

 Read

 Write

 Close

The use of records to store data

The use of SQL to search for data

The use of arrays (or equivalent) when solving problems,

including both one-dimensional and two-dimensional arrays

How to use sub programs (functions and procedures) to

produce structured code

Random number generation

PUPIL

Pupil

_ID

First

Name

Surname Mentor Mark Grade

1012 Ford Prefect HG5 80 8

0981 Tricia McMillan HG7 95 9

1422 Arthur Dent HG1 55 6

SELECT Pupil_ID, FirstName,Surname
FROM Pupil
WHERE grade > 7

1012 Ford Prefect
0981 Tricia McMillan

PupilName = {“Ford”,
“Tricia”, “Arthur”}
NameAndMark = {“Ford”, 80,
“Tricia”, 95, “Arthur”, 6}
ClassTests [20,10]

LIST ARRAY
2 Dimensional

Array

Data Structure

Can contain mixed data types

Size can be changed after it has been defined

Arranges data in row and columns

Description Example Result

Length length = len(name) 17

Convert to upper case capitals = name.upper() ZAPHOD BEEBLEBROX

Convert to lower case small = name.lower() zaphod beeblebrox

Return a substring name.substring(0,2) Zap

There are a wide number of ways in which strings can be manipulated – a few are examples are given in the table for this

example: name = “Zaphod Beeblebrox”

Description PROCEDURE FUNCTION

Example of a subprogram

Needs to be called from the main program

Can have parameters passed into it

Can return values back out to the main
program

STRING MANIPULATION

Many programming

languages (including

Python) have built-in

functions allow

programmers to

manipulate strings.

SUBPROGRAMS are

“programs within programs”

and perform a specific function

within a larger program. Using

subprograms allows larger

programs to be broken down

into smaller parts making them

easier to design, test and

understand.

DATABASES are used to organise and structure data.

In a database, data is stored in on a table – each row

holds a RECORD and each column (FIELD) refers to

different aspect of the data. SQL (STRUCTURED

QUERY LANGUAGE) is a language used to build, edit

and interrogate databases.

Programming languages have built-in functions that can be

used to generate “RANDOM” numbers.
dice_roll = random (1,6)

While variables store

individual pieces of data

ARRAYS are data structures

which store related items of

data.

GCSE COMPUTING
KNOWLEDGE ORGANISER 2.3 PRODUCING ROBUST

PROGRAMS2.3.1 DEFENSIVE DESIGN

© J Bridgeman 2020

Defensive design considerations:

 Anticipating misuse

 Authentication

Input validation

Maintainability:

 Use of sub programs

 Naming conventions

 Indentation

 Commenting

SUB PROGRAMS

make programs easier

to understand. They

also make errors easier

to correct, since they

can be isolated without

affecting the main

program

for loop in range(1,10):
guess=int(input(“Enter your guess”))
if guess = number:

print(“Well done!”)
break

else:
print(“Bad luck”)

print(“Out of goes!”)

for l in range(1,10):
v =int(input(“Enter your guess”))
if x = n:

print(“Well done!”)
break

else:
print(“Bad luck”)
print(“Out of goes!”)

MAIN
MENU()
PLAYER_TURN()
COMPUTER_TURN()

GAME OVER

for loop in range(1,10):
guess=int(input(“Enter your guess”))
if guess = number:
print(“Well done!”)
break
else:
print(“Bad luck”)
print(“Out of goes!”)

for loop in range(1,10):
guess=int(input(“Enter your guess”))
if guess = number:

print(“Well done!”)
break

else:
print(“Bad luck”)

print(“Out of goes!”)

NAMING CONVENTIONS are important because sensibly named constants and variables make a program

easier to understand to programmers who are not familiar with it.

INDENTATION helps to identify blocks of code where iteration or selection are taking place. Many programming

languages automatically indent code. Without indentation it can be hard to identify where there are blocks of code

that do not belong to main ‘sequence’ of the program.

AUTHENTICATION is used to ensure that only

authorised users are able to access data in a system.

This can involve methods such as captcha or biometric

technology like finger print or face recognition.

VALIDATION is a set of rules that a program can use to

ensure user input is restricted to acceptable values and

does not crash the program.

COMMENTING is used to annotate a program listing

in order to explain what the code means. This is

useful when more than one developer is working on a

program and may not be familiar with aspects of the

code.

#create loop to run until correct password is
entered
#program checks password on file against user
input

DEFENSIVE DESIGN means writing a program

anticipating that users might either accidentally or

deliberately cause it to fail.

MAINTAINABILITY is a way of producing code in

such a way that it is easier to fix bugs and flaws

because it is easier for others to read and

understand. A range of techniques is available to

the programmer in order to ensure

maintainability.

2.3.2 TESTING

The purpose of testing

Types of testing:

 Iterative

 Final/terminal

Identify syntax and logic errors

Selecting and using suitable test data:

 Normal

 Boundary

 Invalid

 Erroneous

Refining algorithms

THE PURPOSE OF TESTING is not only

to ensure that the program works , but to

ensure that it completes the tasks that it

was designed to do. Testing identifies

any bugs that are in the program.

ITERATIVE TERMINAL

Carried out while the

program is in development

Carried out at the end of the

development process

Uses TRACE TABLES and

a TEST PLAN

Checks against original plan

to make sure all parts work

and that it works as intended

Print(“Good morning”)
Name = input(“What is your name?)
print(“Nice to meet you” name)

Capital ‘P’

Missing ”

Missing ,

- SYNTAX ERRORS are mistakes that prevent

the program from running.

- All programming languages have rules -

syntax - (for example, about the use of capital

letters) and syntax errors occur when these

rules are broken.

-Programs containing LOGIC ERRORS will run. However,

they do not produce the output that the programmer intended

- This is because the program does not contain syntax errors,

but instead has mistakes in the logic that make it behave

unexpectedly.

- Logic errors are often harder to spot (and fix) then syntax

errors

In this example, the program will run but it will not calculate

the area of a square because the programmer has used this

line…

instead of this line…

#program to calculate area of a square

side = int(input(“Please enter the length)
area = side + 4
print(“The area is”,area)

area = side + 4

area = side * 4

Type of test

data
EXPLANATION EXAMPLE

NORMAL Data that the program

that is designed to

handle

1,2,3,4,5,6
,7,8,9,10

BOUNDARY

/EXTREME

Data on the very

edges of what is / isn’t

acceptable

1,10

INVALID Data the is outside the

limits set by the

program

0,11

ERRONEOUS Data that is unsuitable

for the purpose -
A,B,C,#,!

number = int(input(“Please enter a number from 1 – 10))

Testing allows the programmer to REFINE ALGORITHMS.

Once the programmer has tested the program and identified

the mistakes, they will need to return to the program to

correct or improve the code.

Test

Number

Test

purpose

Test

data

Expected

result

Actual

result

Before a program can

be tested, the

programmer needs to

create a TEST PLAN.

The programmer will

have to identify TEST

DATA that can be used

in the program to see if

it generates errors.

Typical plan layout

GCSE COMPUTING
KNOWLEDGE ORGANISER 2.4 BOOLEAN LOGIC

2.4.1 BOOLEAN LOGIC

© J Bridgeman 2020

Simple logic diagrams using the operators “AND”, “OR”

AND “NOT”

Truth tables

Combining Boolean operators using “AND”, “OR” and

“NOT”

Applying logical operators in truth tables to solve

problems

Logic gates can be combined to create complete

circuits. These can also be represented using truth

tables. The circuit below is made up of three gates:

There are a number of different logic gates which produce different results when they receive inputs (1’s and 0’s.)

Computers are made up of circuits containing

millions of switches. As electrical switches have two

possible values (ON or OFF) ,

these values can be represented

using binary values 1 or 0.

Each circuit contains logic gates and BOOLEAN

LOGIC is used to evaluate the results of different

combinations of 1’s and 0’s.

AND gate

A

B
Q

An OR gate has two possible

inputs – ‘A’ and ‘B’

A B Q

0 0 0

0 1 0

1 0 0

1 1 1

The possible values for each gate

can be represented using a

TRUTH TABLE.

An AND gate has two possible

inputs - ‘A’ and ‘B’

‘Q’ are the possible outputs

A

B
Q

A B Q

0 0 0

0 1 1

1 0 1

1 1 1

OR gate

A Q

0 1

1 0

NOT gate

QAA NOT gate has a single input – ‘A’

C
B
A

Q

A B C Q

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1(A AND B) OR (NOT C)

This an also be represented as a Boolean expression:

GCSE COMPUTING
KNOWLEDGE ORGANISER

2.5.1 LANGUAGES

© J Bridgeman 2020

All programs are executed in machine code – this means that any program now written in machine code needs to

be translated into this form. Software called TRANSLATORS is used to convert High Level Languages or

Assembly Language into machine code. There are two types of translator – COMPILERS and INTERPRETERS.

SOURCE CODE is the language that the program was written in. When this is compiled into OBJECT CODE it

creates an EXECUTABLE file that can run on any computer without the use of a compiler.

Characteristics and purpose of different levels of

programming language:

 High-level languages

 Low-level languages

The purpose of translators

The characteristics of a compiler and an

interpreter

Language Syntax Translation
Hardware

dependent?
Example

LOW

LEVEL

Machine Code

Data and

instructions

made up of 1’s

and 0’s

Does need to be

translated

YES (unique

to each

processor

type)

11000101 11100101
11001101 11010101
01010111 11001000

Assembly

Language

Mnemonics/

symbols

One statement

translates to one

machine code

instruction

YES (unique

to each

processor

type)

MOV1 #5B #6A

LDA1 #6A

HIGH

LEVEL

Python, JAVA,

C++, Visual

Basic

Resembles

human

language

One statement

translates into

many machine

code instructions

NO –

transferrable

and usable

on any

computer

print(“Hello, world”)

COMPILER INTERPRETER

How does

translation take

place?

Compiles High Level

Language programs into

machine code when the

program is complete

Translates the program as it is

being written – translation will

only take place on correct code

Produces

object code?

IDE’s (INTEGRATED

DEVELOPMENT

EVIRONMENTS) allow

programmers to WRITE, EDIT,

EXECUTE and TRANSLATE

their code

Common tools and facilities

available in an Integrated

Development Environment

(IDE):
 Editors

 Error diagnostics

 Run-time environment

 Translators

2.5.2 THE INTEGRATED DEVELOPMENT ENVIRONMENT

The EDITOR allows the programmer to enter/edit code and

may provide tools like auto-indenting, colour coding

variables and commands, and adding line numbers.

ERROR DIAGNOSTICS identify

any errors picked up during the

compilation process – the IDE will

also TRANSLATE the code.

The RUN –TIME ENVIRONMENT

shows what happens when the

code is executed

AN EXAMPLE IDE

HIGH LEVEL LANGUAGES

have different purposes - for

example, games are often

written in JAVA while

PYTHON is used for scripting,

LOW LEVEL LANGUAGES

are used for writing device

drivers and programs that

interact with the hardware.

2.5 Programming languages
and Integrated Development Environments

	Copy of Copy of GCSEcomputing 1.1 KO
	Copy of Copy of GCSEcomputing 1.2 KO
	Copy of Copy of GCSEcomputing 1.3 KO
	Copy of Copy of GCSEcomputing 1.4 KO
	Copy of Copy of GCSEcomputing 1.5 KO
	Copy of Copy of GCSEcomputing 1.6 KO
	Copy of Copy of GCSEcomputing 2.1 KO
	Copy of Copy of GCSEcomputing 2.2 KO
	Copy of Copy of GCSEcomputing 2.3 KO
	Copy of Copy of GCSEcomputing 2.4 KO
	Copy of Copy of GCSEcomputing 2.5 KO

